首页> 外文OA文献 >Mixture-model based estimation of gene expression variance from public database improves identification of differentially expressed genes in small sized microarray data
【2h】

Mixture-model based estimation of gene expression variance from public database improves identification of differentially expressed genes in small sized microarray data

机译:基于混合模型的公共数据库中基因表达差异的估计可改善小型微阵列数据中差异表达基因的鉴定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivation: The small number of samples in many microarray experiments is a challenge for the correct identification of differentially expressed gens (DEGs) by conventional statistical means. Information from public microarray databases can help more efficient identification of DEGs. To model various experimental conditions of a public microarray database, we applied Gaussian mixture model and extracted bi- or tri-modal distributions of gene expression. Prior variance of Baldi's Bayesian framework was estimate for the analysis of the small sample-sized datasets.
机译:动机:在许多微阵列实验中,样品数量少是通过常规统计手段正确鉴定差异表达基因(DEG)的挑战。来自公共微阵列数据库的信息可以帮助更有效地识别DEG。为了模拟公共芯片数据库的各种实验条件,我们应用了高斯混合模型并提取了基因表达的双峰或三峰分布。估计了巴尔迪贝叶斯框架的先验方差,以分析小型样本规模的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号